On Teaching Formal Methods:

Behavior Models and Code Analysis

Jan Kofron
Xkl Ondrej Sery

'.\'-'l: EEEEE

o] el
My 3 NI ol P | Pari
ool o« ' I
A 2 ."““;\ !_!:‘!]-f! & H ol - o - - & ave a f
AT/ e g B & - o B : £ B
. il 71 - A > it = -

S
‘___d'
' — " —




Dependable systems study plan

« Goal: Teach students to efficiently construct
dependable and predictable systems

= W.r.t. functional but also non-functional properties
= Using state-of-the-art methods and tools

« This talk: About courses focused on technigues to
construct functionally correct systems

 Target audience: Graduate students
= Prerequisites: common programming languages, logics,
automata theory
= Not the easiest path for students
= Jobs: system SW, critical embedded systems, R&D



Courses overview

 Recommended programming practices

* Crash dump analysis

 Embedded and real time system

* Operating systems

* Object and component systems

« Middleware

» Software development and monitoring tools
* Performance evaluation of computer system
 Behavior models and verification
 Program analysis and code verification



Behavior models and verification

 Basic course on formal methods

= Model checking, behavior specification, temporal
logics, basic principles and algorithms

e | ectures

= Modeling and verification of behavior
« Both software and hardware

e Labs

= Practical experience with Promela and Spin, (Nu)SMV,
UPPAAL



Behavior models and verification

Modeling basics
LTS, Kripke structure

CTL

explicit model checking LTL
explicit model checking

CTL*
OBBDs LTL vs. CTL vs. CTL*
canonicalization

CTL
symbolic model checking Partial order

reduction Timed
automata

Process
algebras




Behavior models and verification

Modeling basics
LTS, Kripke structure

CTL e e
Spin

————————————————

CTL*

OBBDs LTL vs. CTL vs. CTL*
canonicalization

———————————————————————

UPPAAL

-

Partial order
reduction

U

Timed
automata

———————————————————————

Process
algebras




 Homework:
“model a railway station in Promela”

= Two groups of solutions

« Simple models that can be verified, usually too abstract to
reveal real problems

« Too complex model exceeding the computational resources
(time, memory)

« Hands-on experience with tools showed to be
essential for comprehension of theory

= All possible thread interleavings, LTL semantics, ...



Program analysis and code verification

« Basic course on program verification
= Program model checking
= Deductive methods
= Static analysis of code

* Lectures
= Basic principles and algorithms

e Labs

= Practicing the algorithms “by hand”
= Experience with tools (JPF, PicoSAT, Soot)



Program analysis and code verification

Model checking SW
explicit state, JPF

CEGAR

lazy abstraction

SAT

DPLL, clause learning

SMT, general TP
DPLL(T), semantic tree

Code contracts
Spec#, IML Static analysis

lattices, fixpoints

Specific analyses
data-flow, pointer, ...

Inter-procedural

Current trends analysis




CEGAR

lazy abstraction

Current trends

Model checking SW
explicit state, JPF

SMT, general TP
DPLL(T), semantic tree

Code contracts
Spec#, JML

ESC/Java?2

Soot

Static analysis
lattices, fixpoints

Specific analyses
data-flow, pointer, ...

Inter-procedural
analysis

e ———

10



* Practicing the algorithms “by hand”

= Essential for comprehension

« Hands-on experience with tools
= Students can see that the tools work (discover errors)

* Overview of many tools vs. deep insight into few tools
= Each tool works good in some cases and not so good in others
= Different means, goals, and application domains

« Challenges for students

= Creating JML-like specifications (contracts)
» Choosing the right level of abstraction and precision

= No problems with properties expressed in the code (JPF)

11



 Missing textbooks on program code analysis
= Lectures based mostly on research papers

« Mosttools are not mature
= Cryptic user interface
= |ntegration into IDE would be useful

12



Conclusion

* Low attendance — students may consider these courses
= Difficult (compared to SE, DB, ...)
= Not practical for them

* Prospective students participate in our research
projects
= They get necessary background in the field

« QOutlook
= Keeping the courses up with state of the art
= Making courses more appealing and accessible

13



