
DISTRIBUTED SYSTEMS RESEARCH GROUP

CHARLES UNIVERSITY IN PRAGUE

CZECH REPUBLIC

On Teaching Formal Methods:
Behavior Models and Code Analysis

Jan Kofroň

Ondřej Šerý

Pavel Parízek

Dependable systems study plan

• Goal: Teach students to efficiently construct

dependable and predictable systems

 W.r.t. functional but also non-functional properties

 Using state-of-the-art methods and tools

• This talk: About courses focused on techniques to

construct functionally correct systems

• Target audience: Graduate students

 Prerequisites: common programming languages, logics,

automata theory

 Not the easiest path for students

 Jobs: system SW, critical embedded systems, R&D

2

Courses overview

• Recommended programming practices

• Crash dump analysis

• Embedded and real time system

• Operating systems

• Object and component systems

• Middleware

• Software development and monitoring tools

• Performance evaluation of computer system

• Behavior models and verification

• Program analysis and code verification

3

Behavior models and verification

• Basic course on formal methods

 Model checking, behavior specification, temporal

logics, basic principles and algorithms

• Lectures

 Modeling and verification of behavior

• Both software and hardware

• Labs
 Practical experience with Promela and Spin, (Nu)SMV,

UPPAAL

4

Behavior models and verification

5

sem
ester

Behavior models and verification

6

sem
ester

SMV

Spin

UPPAAL

Feedback

• Homework:

“model a railway station in Promela”

 Two groups of solutions

• Simple models that can be verified, usually too abstract to

reveal real problems

• Too complex model exceeding the computational resources

(time, memory)

• Hands-on experience with tools showed to be

essential for comprehension of theory

 All possible thread interleavings, LTL semantics, …

7

Program analysis and code verification

• Basic course on program verification

 Program model checking

 Deductive methods

 Static analysis of code

• Lectures

 Basic principles and algorithms

• Labs

 Practicing the algorithms “by hand”

 Experience with tools (JPF, PicoSAT, Soot)

8

Program analysis and code verification

9

sem
ester

Program analysis and code verification

10

Java PathFinder

PicoSAT

Yices

ESC/Java2

Soot

Satabs

Blast

sem
ester

Feedback

• Practicing the algorithms “by hand”

 Essential for comprehension

• Hands-on experience with tools

 Students can see that the tools work (discover errors)

• Overview of many tools vs. deep insight into few tools

 Each tool works good in some cases and not so good in others

 Different means, goals, and application domains

• Challenges for students

 Creating JML-like specifications (contracts)

• Choosing the right level of abstraction and precision

 No problems with properties expressed in the code (JPF)

11

Feedback

• Missing textbooks on program code analysis

 Lectures based mostly on research papers

• Most tools are not mature

 Cryptic user interface

 Integration into IDE would be useful

12

Conclusion

• Low attendance – students may consider these courses

 Difficult (compared to SE, DB, …)

 Not practical for them

• Prospective students participate in our research

projects

 They get necessary background in the field

• Outlook

 Keeping the courses up with state of the art

 Making courses more appealing and accessible

13

